Design Exploration of Aerodynamic Wing Shape for RLV Flyback Booster
نویسندگان
چکیده
منابع مشابه
Multi-Objective Design Exploration for Aerodynamic Configurations
A new approach, Multi-Objective Design Exploration (MODE), is presented to address Multidisciplinary Design Optimization problems. MODE reveals the structure of the design space from the trade-off information and visualizes it as a panorama for Decision Maker. The present form of MODE consists of Kriging Model, Adaptive Range Multi Objective Genetic Algorithms, Analysis of Variance and Self-Org...
متن کاملAerodynamic Multiobjective Design Exploration of Flapping Wing Using a Navier-Stokes Solver
An aerodynamic design optimization problem of a three-dimensional flapping wing is explored with the multiobjective design exploration framework coupled with a Navier-Stokes solver. The results show that there is a tradeoff among lift maximization, thrust maximization, and required power minimization. The results also show that strong vortex is generated in both down stroke and up stroke motion...
متن کاملConstraint-based Shape Parameterization for Aerodynamic Design
We present a method for constructing design-appropriate shape parameterizations of discrete surfaces for optimization of flight vehicles. The method allows the designer to choose a set of points located on the aerodynamic surface to serve as design variables. Arbitrary geometric constraints can be prescribed and are intrinsically incorporated into the parameterization. The technique supports bo...
متن کاملAerodynamic Shape Optimization of an Adaptive Morphing Trailing Edge Wing
Adaptive morphing trailing edge wings have the potential to reduce the fuel burn of transport aircraft. In this paper, we quantify the aerodynamic performance benefits of a morphing trailing using aerodynamic design optimization. The aerodynamic model solves the Reynolds-averaged Navier– Stokes equations with a Spalart–Allmaras turbulence model. A gradient-based optimization algorithm is used i...
متن کاملAdaptive Shape Parameterization for Aerodynamic Design
This report concerns research performed in fulfillment of a 2.5-year NASA Seedling Fund grant to develop an adaptive shape parameterization approach for aerodynamic optimization of discrete geometries. The overarching motivations for this work were the potential to radically reduce manual setup time and achieve faster and more robust design improvement, especially for problems where many design...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
سال: 2006
ISSN: 1344-6460
DOI: 10.2322/jjsass.54.144